Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202404213, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600431

ABSTRACT

Electrocatalytic carbon dioxide/carbon monoxide reduction reaction (CO(2)RR) has emerged as a prospective and appealing strategy to realize carbon neutrality for manufacturing sustainable chemical products. Developing highly active electrocatalysts and stable devices has been demonstrated as effective approach to enhance the conversion efficiency of CO(2)RR. In order to rationally design electrocatalysts and devices, a comprehensive understanding of the intrinsic structure evolution within catalysts and micro-environment change around electrode interface, particularly under operation conditions, is indispensable. Synchrotron radiation has been recognized as a versatile characterization platform, garnering widespread attention owing to its high brightness, elevated flux, excellent directivity, strong polarization and exceptional stability. This review systematically introduces the applications of synchrotron radiation technologies classified by radiation sources with varying wavelengths in CO(2)RR. By virtue of in situ/operando synchrotron radiationanalytical techniques, we also summarize relevant dynamic evolution processes from electronic structure, atomic configuration, molecular adsorption, crystal lattice and devices, spanning scales from the angstrom to the micrometer. The merits and limitations of diverse synchrotron characterization techniques are summarized, and their applicable scenarios in CO(2)RR are further presented. On the basis of the state-of-the-art fourth-generation synchrotron facilities, a perspective for further deeper understanding of the CO(2)RR process using synchrotron radiation analytical techniques is proposed.

2.
ACS Nano ; 18(13): 9403-9412, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38488193

ABSTRACT

Diatomic-site catalysts (DASCs) inherit the excellent performance of single-atom catalysts (SACs) by utilizing two adjacent atomic metal species to achieve functional complementarity and synergistic effects that improve the carbon dioxide reduction reaction (CO2RR) and H2 evolution reaction (HER) kinetics. Herein, we report a method to further improve the catalytic efficiency of Pt by using Pt and Ru single atoms randomly anchored on a g-C3N4 surface, yielding partial Pt-Ru dimers. The synthesized catalyst exhibits extraordinary photocatalytic activity and stability in both the CO2RR and HER processes. In-depth experimentation, the pH-dependent chemical exchange saturation transfer (CEST) imaging nuclear magnetic resonance (NMR) method, and theoretical analyses reveal that the excellent performance is attributed to orbital coupling between the Pt atoms and the neighboring Ru atoms (mainly dxy and dxz), which decreases the orbital energy levels and weakens the bond strength with intermediates, resulting in improved CO2RR and HER performance. This study successfully applies the pH-dependent CEST imaging NMR method to catalytic reactions, and CO2 adsorption is directly observed using CEST 2D imaging maps. This work presents significant potential for a variety of catalytic reaction applications by systematically designing bimetallic dimers with higher activity and stability.

3.
Nat Commun ; 15(1): 2390, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493199

ABSTRACT

Metal-halide perovskite thin monocrystals featuring efficient carrier collection and transport capabilities are well suited for radiation detectors, yet their growth in a generic, well-controlled manner remains challenging. Here, we reveal that mass transfer is one major limiting factor during solution growth of perovskite thin monocrystals. A general approach is developed to overcome synthetic limitation by using a high solute flux system, in which mass diffusion coefficient is improved from 1.7×10-10 to 5.4×10-10 m2 s-1 by suppressing monomer aggregation. The generality of this approach is validated by the synthesis of 29 types of perovskite thin monocrystals at 40-90 °C with the growth velocity up to 27.2 µm min-1. The as-grown perovskite monocrystals deliver a high X-ray sensitivity of 1.74×105 µC Gy-1 cm-2 without applied bias. The findings regarding limited mass transfer and high-flux crystallization are crucial towards advancing the preparation and application of perovskite thin monocrystals.

4.
J Am Chem Soc ; 146(10): 6618-6627, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38349322

ABSTRACT

Single-crystal semiconductor-based photocatalysts exposing unique crystallographic facets show promising applications in energy and environmental technologies; however, crystal facet engineering through solid-state synthesis for photocatalytic overall water splitting is still challenging. Herein, we develop a novel crystal facet engineering strategy through solid-state recrystallization to synthesize uniform SrTiO3 single crystals exposing tailored {111} facets. The presynthesized low-crystalline SrTiO3 precursors enable the formation of well-defined single crystals through kinetically improved crystal structure transformation during solid-state recrystallization process. By employing subtle Al3+ ions as surface morphology modulators, the crystal surface orientation can be precisely tuned to a controlled percentage of {111} facets. The photocatalytic overall water splitting activity increases with the exposure percentage of {111} facets. Owing to the outstanding crystallinity and favorable anisotropic surface structure, the SrTiO3 single crystals with 36.6% of {111} facets lead to a 3-fold enhancement of photocatalytic hydrogen evolution rates up to 1.55 mmol·h-1 in a stoichiometric ratio of 2:1 than thermodynamically stable SrTiO3 enclosed with isotropic {100} facets.

5.
Angew Chem Int Ed Engl ; 63(15): e202319882, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38337137

ABSTRACT

Polar materials with spontaneous polarization (Ps) have emerged as highly promising photocatalysts for efficient photocatalytic H2 evolution owing to the Ps-enhanced photogenerated carrier separation. However, traditional inorganic polar materials often suffer from limitations such as wide band gaps and poor carrier transport, which hinders their photocatalytic H2 evolution efficiency. Here, we rationally synthesized a series of isostructural two-dimensional (2D) aromatic Dion-Jacobson (DJ) perovskites, namely (2-(2-Aminoethyl)pyridinium)PbI4 (2-APDPI), (3-(2-Aminoethyl)pyridinium)PbI4 (3-APDPI), and (4-(2-Aminoethyl)pyridinium)PbI4 (4-APDPI), where 2-APDPI and 4-APDPI crystalize in polar space groups with piezoelectric constants (d33) of approximately 40 pm V-1 and 3-APDPI adopts a centrosymmetric structure. Strikingly, owing to the Ps-facilitated separation of photogenerated carriers, polar 2-APDPI and 4-APDPI exhibit a 3.9- and 2.8-fold increase, respectively, in photocatalytic H2 evolution compared to the centrosymmetric 3-APDPI. As a pioneering study, this work provides an efficient approach for exploring new polar photocatalysts and highlights their potential in promoting photocatalytic H2 evolution.

6.
Proc Natl Acad Sci U S A ; 121(6): e2318341121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289957

ABSTRACT

As a prototypical photocatalyst, TiO[Formula: see text] has been extensively studied. An interesting yet puzzling experimental fact was that P25-a mixture of anatase and rutile TiO[Formula: see text]-outperforms the individual phases; the origin of this mysterious fact, however, remains elusive. Employing rigorous first-principles calculations, here we uncover a metastable intermediate structure (MIS), which is formed due to confinement at the anatase/rutile interface. The MIS has a high conduction-band minimum level and thus substantially enhances the overpotential of the hydrogen evolution reaction. Also, the corresponding band alignment at the interface leads to efficient separation of electrons and holes. The interfacial confinement additionally creates a wide distribution of the band gap in the vicinity of the interface, which in turn improves optical absorption. These factors all contribute to the enhanced photocatalytic efficiency in P25. Our insights provide a rationale to the puzzling superior photocatalytic performance of P25 and enable a strategy to achieve highly efficient photocatalysis via interface engineering.

7.
Nano Lett ; 23(23): 11314-11322, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38018816

ABSTRACT

The electrochemical 5-hydroxymethylfurfural oxidation reaction (HMFOR) has been regarded as a viable alternative to sustainable biomass valorization. However, the transformation of the catalysts under harsh electrooxidation conditions remains controversial. Herein, we confirm the self-construction of cuprous sulfide nanosheets (Cu2S NSs) into sulfate-terminated copper oxide nanorods (CuO-SO42- NRs) during the first-cycle of the HMFOR, which achieves a near-quantitative synthesis of 2,5-furandicarboxylic acid (FDCA) with a >99.9% yield and faradaic efficiency without deactivation in 15 successive cycles. Electrochemical impedance spectroscopies confirm that the surface SO42- effectively reduces the onset potential for HMFOR, while in situ Raman spectroscopies identify a reversible transformation from CuII-O to CuIII-OOH in HMFOR. Furthermore, density functional theory calculations reveal that the surface SO42- weakens the Cu-OH bonds in CuOOH to promote the rate-determining step of its coupling with the C atom in HMF-H* resulting from HMF hydrogenation, which synergistically enhances the catalytic activity of CuO-SO42- NRs toward HMF-to-FDCA conversion.

8.
Nat Commun ; 14(1): 7681, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996421

ABSTRACT

Electroreduction of CO2 to valuable multicarbon (C2+) products is a highly attractive way to utilize and divert emitted CO2. However, a major fraction of C2+ selectivity is confined to less than 90% by the difficulty of coupling C-C bonds efficiently. Herein, we identify the stable Cu0/Cu2+ interfaces derived from copper phosphate-based (CuPO) electrocatalysts, which can facilitate C2+ production with a low-energy pathway of OC-CHO coupling verified by in situ spectra studies and theoretical calculations. The CuPO precatalyst shows a high Faradaic efficiency (FE) of 69.7% towards C2H4 in an H-cell, and exhibits a significant FEC2+ of 90.9% under industrially relevant current density (j = -350 mA cm-2) in a flow cell configuration. The stable Cu0/Cu2+ interface breaks new ground for the structural design of electrocatalysts and the construction of synergistic active sites to improve the activity and selectivity of valuable C2+ products.

9.
Chemistry ; 29(71): e202302398, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37728302

ABSTRACT

Electrocatalytic water splitting is one of the most commercially valuable pathways of hydrogen production especially combined with renewable electricity; however, efficient and durable electrocatalysts are urgently needed to reduce electric energy consumption. Here, we reported a Ru and Fe co-doped Mo2 C on nitrogen doped carbon via a controllable two-step method, which can be used for efficient and enduring hydrogen evolution reaction. At 10, 100 and 200 mA cm-2 in acidic electrolyte, the resultant Ru-Fe/Mo2 C@NC delivered low overpotentials of 31, 78 and 103 mV, respectively, which are comparable to that of the commercial Pt/C (20 wt %). At an applied current density of 100 mA cm-2 , stable hydrogen production was conducted for 120 h without obvious degradation. In alkaline media, Ru-Fe/Mo2 C@NC can also deliver a current density of 100 mA cm-2 for more than 100 h. Furthermore, the Ru-Fe/Mo2 C@NC electrocatalyst was used as cathode in an anion exchange membrane water electrolyzer under industrial environments for robust hydrogen production. The characterization and electrochemical results prove the synergism effects between Ru, Fe dopants and Mo2 C for promoting hydrogen evolution activity. This work would pave a new avenue to fabricate low-cost, high-performance hydrogen evolution electrocatalysts for industrial water electrolyzers.

10.
Chemistry ; 29(69): e202302055, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37720979

ABSTRACT

Designing highly excellent and stable catalysts for alkaline oxygen evolution reaction (OER) is gradually pivotal for clean energy development. In this work, a heterogeneous Fe-doped Ni(OH)2 (Ni/Fe-0.1) was developed via simple one-step electrodeposition onto nickel mesh. The heterogeneous interface structure generates sufficient active sites, significantly improving OER performance with an overpotential of 174 mV at 10 mA cm-2 (η10 ), while Tafel slope is only 43.0 mV dec-1 . In particular, Ni/Fe-0.1 is still able to operate stably at a current density of 1 A cm-2 for 100 h without obvious potential decay. The oxidation of Ni2+ to Ni3+ was detected by X-ray photoelectron spectroscopy, proving that the heterogeneous catalyst could stabilize the high-valence state of nickel as active sites to its superior OER performance. This work provides a convenient synthetic strategy for forming heterogeneous catalysts toward efficient water electrolysis.

11.
Chem Commun (Camb) ; 59(79): 11803-11806, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37721035

ABSTRACT

In this study, ruthenium-doped CoFe-based layered double hydroxides on Ni foam (CoFe-ZLDH/Ru@NF) were fabricated via an etching-precipitation strategy. The resultant CoFe-ZLDH/Ru@NF exhibited excellent activity, showing low overpotentials of 219.8 mV and 60.9 mV to reach the current density of 10 mA cm-2 for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. As a bifunctional electrocatalyst, it was assembled in an anion exchange membrane water electrolyser (AEMWE) unit, performing as an anode and cathode simultaneously, which only required a cell voltage of 2.33 V to accomplish the industrial level current density of 1 A cm-2 and operated steadily for over 12 h, making it promising for utilization in hydrogen production.

12.
Nat Commun ; 14(1): 1599, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37072410

ABSTRACT

Practical electrochemical CO2-to-CO conversion requires a non-precious catalyst to react at high selectivity and high rate. Atomically dispersed, coordinatively unsaturated metal-nitrogen sites have shown great performance in CO2 electroreduction; however, their controllable and large-scale fabrication still remains a challenge. Herein, we report a general method to fabricate coordinatively unsaturated metal-nitrogen sites doped within carbon nanotubes, among which cobalt single-atom catalysts can mediate efficient CO2-to-CO formation in a membrane flow configuration, achieving a current density of 200 mA cm-2 with CO selectivity of 95.4% and high full-cell energy efficiency of 54.1%, outperforming most of CO2-to-CO conversion electrolyzers. By expanding the cell area to 100 cm2, this catalyst sustains a high-current electrolysis at 10 A with 86.8% CO selectivity and the single-pass conversion can reach 40.4% at a high CO2 flow rate of 150 sccm. This fabrication method can be scaled up with negligible decay in CO2-to-CO activity. In situ spectroscopy and theoretical results reveal the crucial role of coordinatively unsaturated metal-nitrogen sites, which facilitate CO2 adsorption and key *COOH intermediate formation.

13.
Small ; 19(23): e2207037, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36879480

ABSTRACT

Electrochemical CO2 -to-CO conversion offers an attractive and efficient route to recycle CO2 greenhouse gas. Molecular catalysts, like CoPc, are proved to be possible replacement for precious metal-based catalysts. These molecules, a combination of metal center and organic ligand molecule, may evolve into single atom structure for enhanced performance; besides, the manipulation of molecules' behavior also plays an important role in mechanism research. Here, in this work, the structure evolution of CoPc molecules is investigated via electrochemical-induced activation process. After numbers of cyclic voltammetry scanning, CoPc molecular crystals become cracked and crumbled, meanwhile the released CoPc molecules migrate to the conductive substrate. Atomic-scale HAADF-STEM proves the migration of CoPc molecules, which is the main reason for the enhancement in CO2 -to-CO performance. The as-activated CoPc exhibits a maximum FECO of 99% in an H-type cell and affords a long-term durability at 100 mA cm-2 for 29.3 h in a membrane electrode assembly reactor. Density-functional theory (DFT) calculation also demonstrates a favorable CO2 activation energy with such an activated CoPc structure. This work provides a different perspective for understanding molecular catalysts as well as a reliable and universal method for practical utilization.

14.
Angew Chem Int Ed Engl ; 62(19): e202217296, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36912381

ABSTRACT

The electrocatalytic reduction of carbon dioxide provides a feasibility to achieve a carbon-neutral energy cycle. However, there are a number of bottleneck issues to be resolved before industrial application, such as the low conversion efficiency, selectivity and reaction rate, etc. Engineering local environment is a critical way to address these challenges. Here, a monolayer MgAl-LDH was proposed to optimize the local environment of Cu for stimulating industrial-current-density CO2 -to-C2 H4 electroreduction in neutral media. In situ spectroscopic results and theoretical study demonstrated that the Cu electrode modified by MgAl-LDH (MgAl-LDH/Cu) displayed a much higher surface pH value compared to the bare Cu, which could be attributed to the decreased energy barrier for hydrolysis on MgAl-LDH sites with more OH- ions on the surface of the electrode. As a result, MgAl-LDH/Cu achieved a C2 H4 Faradaic efficiency of 55.1 % at a current density up to 300 mA cm-2 in 1.0 M KHCO3 electrolyte.

15.
Small ; 19(27): e2207965, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36965022

ABSTRACT

The progress of effective and durable electrocatalysts for oxygen evolution reaction (OER) is urgent, which is essential to promote the overall efficiency of green hydrogen production. To improve the performance of spinel cobalt-based oxides, which serve as promising water oxidation electrocatalysts in alkaline electrolytes, most researches have been concentrated on cations modification. Here, an anionic regulation mechanism is employed to adopt sulfur(S) anion substitution to supplant NiCo2 O4 by NiCo2 S4 , which contributed to an impressive OER performance in alkali. It is revealed that the substitution of S constructs a sub-stable spinel structure that facilitates its reconstruction into active amorphous oxysulfide under OER conditions. More importantly, as the active phase in the actual reaction process, the hetero-anionic amorphous oxysulfide has an appropriately tuned electronic structure and efficient OER electrocatalytic activity. This work demonstrates a promising approach for achieving anion conditioning-based tunable structure reconstruction for robust and easy preparation spinel oxide OER electrocatalysts.

16.
Chemphyschem ; 24(8): e202200657, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36646629

ABSTRACT

The discovery of high-performance catalysts for the electrochemical CO2 reduction reaction (CO2 RR) has faced an enormous challenge for years. The lack of cognition about the surface active structures or centers of catalysts in complex conditions limits the development of advanced catalysts for CO2 RR. Recently, the positive valent metal sites (PVMS) are demonstrated as a kind of potential active sites, which can facilitate carbon dioxide (CO2 ) activation and conversation but are always unstable under reduction potentials. Many advanced technologies in theory and experiment have been utilized to understand and develop excellent catalysts with PVMS for CO2 RR. Here, we present an introduction of some typical catalysts with PVMS in CO2 RR and give some understanding of the activity and stability for these related catalysts.

17.
Chemistry ; 29(15): e202203165, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36514875

ABSTRACT

To simultaneously improve the hole extraction ability of the BiVO4 photoanode and accelerate the surface reaction kinetics, herein, a carbon nanolayer conformally coated Fe2 O3 (C-Fe2 O3 ) as oxygen evolution catalyst (OEC) is loaded on the H2 plasma treated nanoporous BiVO4 (BVO(H2 )) surface by a hydrothermal reaction. It is found that the H2 plasma induced vacancies in BVO remarkably increases the conductivity, and the C-Fe2 O3 enables hole extraction from the bulk to the surface as well as efficient hole injection to the electrolyte. As a result, the C-Fe2 O3 /BVO(H2 ) photoanode achieves a photocurrent density of 4.4 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) and an ABPE value of 1.5 % at 0.68 V vs. RHE, which are 4.8-fold and 13-fold higher than that of BVO photoanode, respectively.

18.
Chemistry ; 29(6): e202202895, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36350329

ABSTRACT

Perovskite solar cells (PSCs) are the one of most promising photovoltaic technologies that can be achieved by a simple solution process. At the current stage, the key issues concern further improvements in efficiency and operational lifetime. Constructing a self-assembled perovskite structure with manipulated chemical and physical properties is a useful and effective strategy to solve these problems. Herein, we review the basic principles of and recent progress in the spontaneous formation behavior of heterostructured perovskite thin films. This concept provides insightful clues for the design and fabrication of stable and efficient PSCs for next-generation photovoltaics.

19.
Small Methods ; 6(12): e2201130, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36333185

ABSTRACT

Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.

20.
JACS Au ; 2(10): 2352-2358, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36311837

ABSTRACT

Identification of the active centers dynamically stable under the reaction condition is of paramount importance but challenging because of the limited knowledge of steady-state chemistry on catalysts at the atomic level. Herein, focusing on the Fe2O3 catalyst for the selective catalytic reduction of NO with NH3 (NH3-SCR) as a model system, we reveal quantitatively the self-evolving Fe3+@Fe2+ (∼1:1) double-centers under the in-situ condition by the first-principles microkinetic simulations, which enables the accurate prediction of the optimal industry operating temperature (590 K). The cooperation of this double-center achieves the self-optimization of catalytic activity and rationalizes the intrinsic origin of Fe2O3 catalyzing NH3-SCR at middle-high temperatures instead of high temperatures. Our findings demonstrate the atomic-level self-evolution of active sites and the dynamically adjusted activity variation of the catalyst under the in-situ condition during the reaction process and provide insights into the reaction mechanism and catalyst optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...